Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2744506.v1

ABSTRACT

Several countries have weakened the carbon emission objectives to immediately revive the economy in the post-COVID-19 era. Therefore, it is a challenge worth addressing to readjust the economic development and carbon emissions after the COVID-19 pandemic. From the perspective of China's carbon emissions, this study shapes a multi-objective dynamic optimization model based on the material capital input and R&D support aspects. The proposed model imitates China's economic development, energy consumption, and carbon dioxide (CO2) emissions. The model provides theoretical suggestion for the government to revive economic development and reduce carbon emissions. In addition, this research paper compares the evolutionary path of carbon peak under the two scenarios. The first scenario requires maintaining the pre-epidemic development state and pace of carbon emission reduction, referred to as the baseline scenario (BS). The second scenario is termed the optimal scenario (OS) based on the model calculation. The study findings exhibit that China is not able to accomplish the 2030 CO2 emission peak objective, under the BS. However, China under the OS shall expectedly accomplish the 2030 carbon peak objective ahead of schedule, while the peak CO2 emissions shall be around 11.28 billion tons. Reportedly, at least 788 million tons of CO2 reduction contrasted with the BS. Further, there is an 80.35% decline in energy intensity as compared to 2005. Consequently, the study results contribute theoretical guidance for the "green recovery" of China's economy and the adjustment of carbon emission reduction’s path after the COVID-19 epidemic. Consistent with this, the research method also contributes to the theoretical research on carbon emissions at the national level while extending a new research perspective for the economic- and environmental fields.


Subject(s)
COVID-19
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-112442.v1

ABSTRACT

Individuals with autism spectrum disorder (ASD) show an enhanced response to stressors, and gender plays an important role in stress response. Thus, autistic traits (ATs) in the general population and gender may regulate the emotion changes before and during the outbreak of COVID-19. The present study addressed this issue through a participants between quasi-experimental design, in which the epidemic status (before, during), gender (male, female), and AT groups (high ATs, low ATs) were independent variables, and positive and negative emotions were dependent variables. We used generalized linear models to estimate the effects of the independent variables and their interactions on emotions. The results showed that the COVID-19 outbreak reduced positive emotions and increased fear and anger. Furthermore, compared with before the COVID-19 outbreak, individuals with high ATs and females experienced stronger anger and fear than individuals with low ATs and males during the epidemic. The present study revealed the emotional impacts of COVID-19 and greater emotional susceptibility to COVID-19 pandemic among individuals with high ATs and females. Our findings provide prospective evidence for understanding the ASD/ATs-related enhanced response to pathogen threat-related stressors and have implications for COVID-19 crisis interventions.  


Subject(s)
COVID-19 , Child Development Disorders, Pervasive
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.23.350348

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been suggested as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry to cause coronavirus disease 2019 (COVID-19). However, no ACE2 inhibitors have shown definite beneficiaries for COVID-19 patients, applying the presence of another receptor for SARS-CoV-2 entry. Here we show that ACE2 knockout dose not completely block virus entry, while TfR directly interacts with virus Spike protein to mediate virus entry and SARS-CoV-2 can infect mice with over-expressed humanized transferrin receptor (TfR) and without humanized ACE2. TfR-virus co-localization is found both on the membranes and in the cytoplasma, suggesting SARS-CoV-2 transporting by TfR, the iron-transporting receptor shuttling between cell membranes and cytoplasma. Interfering TfR-Spike interaction blocks virus entry to exert significant anti-viral effects. Anti-TfR antibody (EC50 16.6 nM) shows promising anti-viral effects in mouse model. Collectively, this report indicates that TfR is another receptor for SARS-CoV-2 entry and a promising anti-COVID-19 target.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-96962.v1

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been suggested as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry to cause coronavirus disease 2019 (COVID-19). However, no ACE2 inhibitors have shown definite beneficiaries for COVID-19 patients, applying the presence of another receptor for SARS-CoV-2 entry. Here we show that ACE2 knockout dose not completely block virus entry, while TfR directly interacts with virus Spike protein to mediate virus entry and SARS-CoV-2 can infect mice with over-expressed humanized transferrin receptor (TfR) and without humanized ACE2. TfR-virus co-localization is found both on the membranes and in the cytoplasma, suggesting SARS-CoV-2 transporting by TfR, the iron-transporting receptor shuttling between cell membranes and cytoplasma. Interfering TfR-Spike interaction blocks virus entry to exert significant anti-viral effects. Anti-TfR antibody (EC50 ∼16.6 nM) shows promising anti-viral effects in mouse model. Collectively, this report indicates that TfR is another receptor for SARS-CoV-2 entry and a promising anti-COVID-19 target.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL